Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37182772

ABSTRACT

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Subject(s)
Ecosystem , Fagus , Climate Change , Forests , Trees
2.
Glob Chang Biol ; 28(23): 6921-6943, 2022 12.
Article in English | MEDLINE | ID: mdl-36117412

ABSTRACT

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.


Subject(s)
Carbon Cycle , Climate Change , Carbon , Temperature , Water
3.
Plants (Basel) ; 11(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35567149

ABSTRACT

Considering the surface of individual tree compartments, it is obvious that the main portion of bark, i.e., the largest area and the greatest bulk mass, is located on the stem. We focused on basic bark properties, specifically thickness, surface area, biomass, and specific surface mass (expressed as dry weight per square unit) on stems of four broadleaved species: common aspen (Populus tremula L.), goat willow (Salix caprea L.), rowan (Sorbus aucuparia L.), and sycamore (Acer pseudoplatanus L.). Based on the previous work from mature forests, we hypothesize that bark properties of young trees are also species-specific and change along the stem profile. Thus, across the regions of Slovakia, we selected 27 forest stands composed of one of the target broadleaved species with ages up to 12 years. From the selected forests, 600 sample trees were felled and stem bark properties were determined by measuring bark thickness, weighing bark mass after its separation from the stem, and drying to achieve a constant weight. Since the bark originated from trees of varying stem diameters and from different places along the stem (sections from the stem base 0-50, 51-100, 101-150, 151-200, and 201-250 cm), we could create regression models of stem characteristics based on the two mentioned variables. Our results confirmed that bark thickness, thus also specific surface mass, increased with stem diameter and decreased with distance from the stem base. While common aspen had the thickest stem bark (4.5 mm on the stem base of the largest trees) the thinnest bark from the analyzed species was found for sycamore (nearly three times thinner than the bark of aspen). Since all four tree species are very attractive to large wild herbivores as forage, besides other uses, we might consider our bark mass models also in terms of estimating forage potential and quantity of bark mass consumed by the herbivory.

4.
Plants (Basel) ; 11(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35406968

ABSTRACT

Deadwood is an important component of forests that fulfils many ecosystem functions. The occurrence, amount and spatial distribution of deadwood in forest ecosystems depend on tree species composition, historical development and past management. In this presented study, we assessed the total amount of deadwood, including fine and coarse woody debris at five areas of predominantly broadleaved forests within the University Forest Enterprise of the Technical University in Zvolen, Slovakia that had been disturbed by windstorm Zofia in 2014. Windthrown wood was salvaged between May 2014 and October 2015. In the year 2018, we performed an inventory of deadwood that remained on-site after salvage logging. The mean volume of deadwood recorded at sample plots fluctuated between 35.96 m3/ha and 176.06 m3/ha and mean deadwood coverage values at individual disturbed areas ranged from 7.27 to 17.91%. In the work, we derived several models for the estimation of deadwood volume based on deadwood coverage and/or diameter, which showed that these characteristics are good proxies of deadwood volume. The tests, involving close-range photogrammetry methods for deadwood quantification, revealed that the number of pieces and the coverage of deadwood recorded in photos was significantly lower than the values derived from field measurements.

5.
Plants (Basel) ; 10(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34961194

ABSTRACT

(1) Background: Boreal forests influence global carbon balance and fulfil multiple ecosystem services. Their vegetation growth and biomass are significantly affected by environmental conditions. In the present study we focused on one of the least accessible and least studied parts of the boreal region situated in the western part of Putorana plateau, Central Siberia (Lama and Keta lakes, Krasnoyarsk region), northern Russia. (2) Methods: We derived local height-diameter and crown radius-height models for six tree species. We used univariate correlation and multiple regression analyses to examine the relationships between tree biomass and environmental conditions. (3) Results: Total tree biomass stock (aboveground tree biomass + aboveground and buried deadwood) varied between 6.47 t/ha and 149 t/ha, while total deadwood biomass fluctuated from 0.06 to 21.45 t/ha. At Lama, biomass production decreased with elevation. At Keta, the relationship of biomass to elevation followed a U shape. Stand biomass changed with micro-terrain morphology and soil nutrient content, while the patterns were location-specific. (4) Conclusions: The majority of the derived models were significant and explained most of the variability in the relationships between tree diameter or crown radius and tree height. Micro-site environmental conditions had a substantial effect on tree biomass in the studied locations.

6.
Plants (Basel) ; 10(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34685962

ABSTRACT

The main goal of this study is to analyse and interpret interspecific differences in foliage biomass/area and woody parts biomass as well as the ratio between quantities of foliage and woody components (i.e., branches, stem and roots). The study was principally aimed at determining basic biomass allocation patterns and growth efficiency (GE) of four broadleaved species, specifically common aspen (Populus tremula L.), European hornbeam (Carpinus betulus L.), silver birch (Betula pendula Roth.) and sycamore (Acer pseudoplatanus L.) in young growth stages. We performed whole-tree sampling at 32 sites located in central and northern parts of Slovakia. We sampled over 700 trees and nearly 4900 leaves to quantify biomass of woody parts and foliage traits at leaf and tree levels. Moreover, we estimated specific leaf area in three parts of the crown, i.e., the upper, middle and lower thirds. We found that hornbeam had the largest foliage biomass and the lowest foliage area of all investigated species, while its biomass of woody parts did not differ from aspen and sycamore. Birch had the lowest biomass of woody parts, although its foliage properties were similar to those of aspen. Intraspecific differences of foliage were related to tree size and to leaf position along the vertical crown profile. Growth efficiency (GE), expressed as woody biomass production per foliage area unit, was evidently larger in hornbeam than in the other three broadleaves. We suggest that future GE modelling should utilize real values of stem diameter increment measured in a current year, bio-sociological position of trees and competition indicators as inputs. Such an approach would elucidate the role of stand structure and tree species mixture for ecological and production properties of forest stands.

7.
Sci Rep ; 11(1): 17242, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446799

ABSTRACT

Climate change is a major threat to global biodiversity, although projected changes show remarkable geographical and temporal variability. Understanding this variability allows for the identification of regions where the present-day conservation objectives may be at risk or where opportunities for biodiversity conservation emerge. We use a multi-model ensemble of regional climate models to identify areas with significantly high and low climate stability persistent throughout the twenty-first century in Europe. We then confront our predictions with the land coverage of three prominent biodiversity conservation initiatives at two scales. The continental-scale assessment shows that areas with the least stable future climate in Europe are likely to occur at low and high latitudes, with the Iberian Peninsula and the Boreal zones identified as prominent areas of low climatic stability. A follow-up regional scale investigation shows that robust climatic refugia exist even within the highly exposed southern and northern macro-regions. About 23-31% of assessed biodiversity conservation sites in Europe coincide with areas of high future climate stability, we contend that these sites should be prioritised in the formulation of future conservation priorities as the stability of future climate is one of the key factors determining their conservation prospects. Although such focus on climate refugia cannot halt the ongoing biodiversity loss, along with measures such as resilience-based stewardship, it may improve the effectiveness of biodiversity conservation under climate change.

8.
Tree Physiol ; 39(12): 1937-1960, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31748793

ABSTRACT

Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.


Subject(s)
Climate Change , Ecosystem , Carbon , Carbon Cycle , Forests
9.
Ecosphere ; 10(2): e02616, 2019 Feb.
Article in English | MEDLINE | ID: mdl-34853712

ABSTRACT

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10-40% per century under current climate and 20-170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.

10.
J Environ Biol ; 29(3): 291-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18972680

ABSTRACT

We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.


Subject(s)
Trees/classification , Geography , Species Specificity , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...